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Abstract

Python is extremely powerful programming language for physicists and mathematicians,
not just for its ability to carry out complex maths equations but also to be able to graph
representations for these mathematical equation. We are going to be using quiver plots
to graphically represent the potential solutions to differential equations. In this report
we will be including plots containing vector fields with directions and magnitudes as well
as contour plots which gives a background color representing the magnitude. These plots
represent real physical systems specifically population, Lotka-Volterra model and limit
cycles. We do this to explore the different graphical methods of displaying differential
equations and when they don’t accurately represent the real world models they are trying
to reproduce.
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1 Introduction
This report will be building on what we have previously done regarding Euler’s method and
more importantly the Runge-Kutta fourth order method of solving differential equations in
python, however we will be moving away from these methods and focusing on quiver plots
which are used to produce vector fields. These quiver plots will graphically describe the solu-
tion to differential equations at many different points this is extremely useful for representing
different types of differential equations. In this lab report we will graphically be describing pop-
ulation simulations from differential equations. The two population models are known as the
Verhulst model and the Lotka-Volterra model respectively. In this report we will be comment-
ing on the difference between two graphical models as well as how these graphical differences
represent the theoretical differences inherent in the two models. We will then discuss some
more mathematically abstract models which we believe will help us learn more about graphical
methods in Python.

2 Background and Theory
The first thing we cover in this report is the theory surrounding the quiver plots produced in
Python. Vector fields describe the direction and magnitude of vectors at a number of points
in a plane, vector fields are common in electromagnetism and also in a field of mathematics
known as vector calculus. Its no surprise then that Pythons plotting package known as mat-
plotlib comes with the ability to create graphical representations of vector fields included in
the package.

Throughtout the report we will be making reference to vectors, vectors are any object which
has both a direction as well as a magnitude. We often display vectors graphically as arrows
where the head of the arrow denotes the direction and the length of the arrow represents the
magnitude.

Taking the vector field example one step further we can create a certain type of plot known as
a stream plot, this stream plot creates trajectories or field lines from vector fields. Each of the
stream lines represents a possible solution to a differential equation, this way we can visualise
solutions to differential equations without actually solving them.

In this experiment we will be using quiver plots and stream plots to show the expected be-
haviour of multiple differential equations, this is because quiver plots and by extension stream
plots are pythons way of graphing vector fields, quiver plots are extremely useful because we
can change some of the initial conditions to change how the vector field behaves, for example
one of these conditions is the number of vectors that appear per grid point this allows us to
increase or decrease the density of vectors.

The first part of this experiment concerns itself with getting familiar with these initial con-
ditions before returning to the harmonic oscillator and damped harmonic oscillator equations
we have worked with previously.

The second part of this experiment concerns itself with graphing vector fields showing the
potential solutions for population differential equations. One such equation is the logistic equa-
tion known as the Verhulst model for population. The equation is as follows:

dx

dt
≡ ẋ = rx(1− x

K
) (1)
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Where K is the carrying capacity or the maximum population of the system, r is the rate of
growth or decay of the system and x(t) represents the population at a certain point in time.

This equation is considered to be a simple model for how population reaches equilibrium and
only focuses on one population and doesn’t account for how one population may have an impact
on another population such as a hunter / prey model which we will explore in more detail.

We will also explore the Lotka-Volterra (LV) Model which models two populations simultane-
ously and how the two populations impact each other using rabbits and foxes as the example.
The equations for the Lotka-Volterra (LV) Model is as follows:

dx

dt
= ax− bxy (2)

dy

dt
= cxy − dy (3)

Where x(t) is the population growth of the rabbits, y(t) is the population growth of the foxes,
a defines the growth rate, b is a parameter that measure how effective the foxes are at hunting
rabbits, c is a parameter that defines how beneficial rabbits are to the foxes and d is a measure
of this fox death rate.

We can see that this model uses two differential equations to represent each population and
the population of one species has an impact on the population of the other, more specifically
a higher population of foxes reduces the population of the rabbits and the decrease in rabit
populations results in a decreased fox population. When we analyse the graphs obtained from
this model we will discuss the model in more detail and its strengths and weaknesses as a
biological model to represent population.

This is all the theory we need to begin analysing the data collected from the python pro-
grammes in the next section of the report. We will not go into the results collected during the
experiment.

3 Results
In the first couple of programmes we are familiarising ourselves with the quiver function in
python, we go into why they are important and how they are used as well as going into variations
on quiver plots such as streamline plots and situations where they are the better option. We
also rethread over previously covered topics such as harmonic motion and displaying harmonic
motion graphically using vectors. Starting at Program 4 we get into the population models we
discussed in the theory section.

Program 1:
Program 1 revolves around using quiver plots to create vector fields for a specific equation given
the initial parameters: range 0 to 2π, 101 grid points the equations are as follows:

V (x, y) = (Vx, Vy)

Vx = cos(x) ∗ y

Vy = sin(x) ∗ x
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Figure 1: Example of a simple quiver plot

The vector plots for these equations are as follows: The above examples show what a basic
quiver plot should look like, during our experiment the only parameters we changed is how
often the vectors appear along the grid lines. You can clearly see that by changing the program
so that the vectors appear every 3rd grid line reduces the number of vectors present on the
graph and can potentially make it easier to read depending on what exactly you are trying to
analyse about the plot. Regardless of the number of vectors present both graphs effectively
show the potential solutions to the functions they are trying to graphically show, we can see
the different directions being expressed by where the heads of the arrows are pointing and the
arrows have different lengths with the longest arrows having the biggest magnitude. At both y
= 0 and y = 3 the same pattern seems to appear where the points closest to (2,0), (2,3), (5,0)
and (5,3) appear to have no direction or magnitude vectors present and just display the scatter
points.

Program 2:
The second program involves modifying the previous code to be a scalar function. We then
plotted a contour map gradient on top of the plot of the scalar function, the graphs were as
follows:
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(b) Quiver plot with gradient

Figure 2: Quiver plot of scalar function
√
x2 + y2 (Vector every 5th grid point)

We can see from the graph that even setting the vectors to display every 5th grid point the plot
is extremely crowded and if we were working with a function that wasn’t so uniform it may
actually be difficult to interpret the vector field correctly, this is why the gradient is so helpful
it shows a visual representation of where the vectors are directed and the magnitude of those
vectors using a color gradient where blue is the lowest concentration and red is the greatest. In
the gradient version of the plot it is even easier to see that the plot is split up into four equal
sections where the vectors are all pointing towards the four corners of the plot away from some
central point at (0,0).

Program 3:
Both of the programs above were just examples of how quiver plots work and the different tech-
niques you can use to try and make the plots easier to read and notice patterns however in this
program we will finally be using a real world equation as apposed to a theoretical mathemat-
ical vector field. This example is the harmonic oscillator which we have worked with previously.

This is a similar process to the two above examples however this time we will be switching
our the equation to fit the equation for a harmonic oscillator and a damped harmonic oscillator
respectively. The values chosen were ω = 1 and b = 0.45 and the plots were as follows:
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Figure 3: Quiver plot of SHO and Damped SHO

In this example the decision was made to include streamlines as the addition of these extra
lines with gradient makes it easier to understand the direction and also the magnitude of the
vectors in this example. This plots give us a graphical representation we expect for Simple
Harmonic Motion and damped oscillators, when there is no damping involved the vector field
is circular with the magnitudes remaining constant (i.e no color change along each individual
streamline) meaning that the system is in a constant cycle and the vectors are balanced. When
we introduced the damped section we can see that the equation has a decaying nature the
vectors begin to point outwards towards the edges as the magnitude of the vectors increases
with time meaning the system is no longer being conserved.

Program 4:
In this problem we look at a logistic equation, more specifically the Verhulst model of popu-
lation. This equation supposedly describes the population of a single species over time. It is
supposed to be considered a more complex and accurate depiction of population than a simple
exponential population model which was used previously however during this report we will
show that even this model is quite simplistic in its approach to determining population. Again
the equation is the same as Eq. 1 :

dx

dt
≡ ẋ = rx(1− x

K
)

We can see that from this expression that the largest value that x can be before the population
starts to decay is K which is the carrying capacity until this value is reached we can determine
how much the population can still increase by to reach this ratio. As the population increases
1− x

K
gets smaller and smaller until it reaches zero and the value x is equal to the value of the

carrying capacity. We can reach this value quicker or slower depending on the initial value of
r. This is what we will show graphically:
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The graph and the one dimensional vector shows all three initial conditions converging at the
0 point on the y axis and the 0 and 1 point on the x axis. The point we are interested in is
(1,0), this point is where the three initial condition functions converge at the same value of 0
population growth and 1 which is the same value as the carrying capacity K.
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Figure 5: Population Growth over time (Verhulst model)

This graph shows that increasing the r value or the rate of growth increases how fast the
population reaches its carry capacity K. This is what we expect to observe. I kept the value of
K constant throughout the two graphs however changing this parameter will just change the
value the plot will peak at on the y-axis.
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Program 5:
In this part of the report we explore our second population equation included in the intro-
duction. This model has already been introduced as the Lotka-Volterra model. As mentioned
before this population model differs from the previous one as it explores two populations si-
multaneously and how the interact with one another. To explore this further we will be using
the example of rabbits and foxes.

We start off by making quiver / streamline plots using initial values given:
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Figure 6: Streamline Quiver plot for Rabbit vs Fox Population

We then repeated this for four more initial conditions a,b,c and d.
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Figure 7: Streamline Quiver plot for Rabbit vs Fox Population

When the c value is disproportionally high, the rabbits are extremely beneficial to the foxes
we see long vectors vertically upwards towards the foxes population and its population grows.
When the a value is disproportionally high, the growth rate is extremely high the rabbits pop-
ulation increases and the long vectors point horizontally as the rabbits breed in an exponential
rate.
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Figure 8: Streamline Quiver plot for Rabbit vs Fox Population

When the growth rate a and b how efficient the foxes are at killing the rabbits are both high
the plot skews towards the foxes however the growth rate of the rabbits are good enough to
prevent it from being directly vertical vectors.

when everything is equal but b the foxes are more efficient at killing the rabbits the graph
skews heavily to the foxes but the population of the foxes does not increase.

We now move on from using vector fields to describe the relationship between the Fox and
Rabbit population and the different initial conditions that can be adjusted to affect the out-
comes and instead focus our attention on the Runge-kutta RK4 model to solve the system.
We can plot these results as ordinary plots and phase diagrams, which will allow us to analyse
population size specifically. These graphs are included below:
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Figure 9: Time series (a) and phase plot of the rabbit and fox population, using a = 4.0,
b = 2.0, c = 1/3 , and d = 1.0 with x0 = 4.0 and y0 = 2.0

This graph describes the relationship that exists between the foxes and rabbits and how they
depend on each other as time passes. One thing thats easy to observe is that the fox pop-
ulation is far smaller than the rabbit population and does not increase nearly as quickly as
the rabbit population. Looking back at Eq. 2 its easy to see why, the rabbit population is
exactly proportional to the growth rate. Another thing we observe from the graph is that as
the fox population rises, the rabbit population drops and vice versa. One thing of note about
this graph is that there is no equilibrium where the values come to a steady state, instead it
continuously oscillates back and forth between increasing and decreasing each population.

We then repeat this process for the initial values we used above in our quiver plots.
(four seperate plots)
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Figure 10: Time series (a) and phase plot of the rabbit and fox population, using a = 4.0,
b = 2.0, c = 15 , and d = 1.0 with x0 = 4.0 and y0 = 2.0

In this graph the rabbits are extremely beneficial to the foxes, at the beginning of the graph
the foxes immediately reduce the number of rabbits as they out number them so greatly, after
some time the fox population dies down as there is no more rabbits, once the fox population
reaches zero the rabbits attempt to populate again and are immediately killed by an influx of
fox population.
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Figure 11: Time series (a) and phase plot of the rabbit and fox population, using a = 10,
b = 2.0, c = 0 , and d = 1.0 with x0 = 4.0 and y0 = 2.0

In this graph the growth population is extremely high and the rabbit population sky rockets
exponentially to the point where the graph scales to 1 × 1042 N. The rabbit population also
never decreases in the phase diagram.
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Figure 12: Time series (a) and phase plot of the rabbit and fox population, using a = 10,
b = 10, c = 5 , and d = 1.0 with x0 = 4.0 and y0 = 2.0

In this graph both the growth rate and how efficient the foxes are at killing the rabbits are
high, the high populations of the foxes immediately reduces the rabbit population which quickly
reduces the foxes population as well, then the rabbit population restores quickly and the fox
population follows suit and this continuous on with a reduction in the max population each
time.
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Figure 13: Time series (a) and phase plot of the rabbit and fox population, using a = 1, b = 2,
c = 1 , and d = 1.0 with x0 = 4.0 and y0 = 2.0

In this graph everything is equal but the foxes are more efficient at killing. This shows that
the foxes are able to kill the rabbits while in smaller numbers much quicker and will quickly
reduce the rabbit population if it increases again.

13



Program 6:
In the final section of this lab report we will discuss something known as limit cycles. In this
example the trajectories will spiral towards or away from this ”limit cycle”. In order to achieve
this affect we need to use the RK45 method once again and we will be using it to solve two
connected differential equations. The equations are as follows

dx

dt
= y

dy

dt
= −x+ (1− x2)y

We will of course be exploring these equations for multiple initial conditions and including
graphs of the quiver plot of the graph, the plots of x(t) vs t and y(t) vs t and phase space
diagrams of y vs x below for the following initial values:

(a). x(0) = 3, y(0) = 3;

(b). x(0) = −2, y(0) = 2;

(c). x(0) = 0.1, y(0) = 0.1;

(d). x(0) = 0.5, y(0) = 1;

As well as 2 other initial parameters:

(e). x(0) = 0.1, y(0) = 10;

(f). x(0) = 5, y(0) = 9;
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Figure 14: Limit Cycle graphs for different initial values
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Figure 15: Limit Cycle Phase space diagrams for different initial conditions

From the abundance of graphs included here we can see cyclical behaviour occurring in the
plots, in each of the plots the plots start out in an unsteady state and after one cycle the come
to a steady state and remain that way for the rest of the cycles. All of the graphs follow the
exact same shape and only differ by their initial condition.

From the phase diagrams we can see that the first two phase diagrams are stable limit cy-
cles and spirals into a close loop, the second two phase diagrams are unstable limit cycles as
the do not spiral into close loops, therefore the two phase diagrams with the initial conditions
we chose are stable limit cycles.
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Figure 16: Limit Cycle graphs for different initial conditions
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Figure 17: Limit Cycle Phase space diagrams for different initial conditions
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4 Discussion and Conclusion
Upon completion of the report we have become familiar with multiple different graphical meth-
ods, initially we began with vector fields and using the quiver and streamline methods. These
tools allowed us to see the many different solutions possible for differential equations without
actually solving these equations. We also used these methods as another way to visualise simple
harmonic oscillators and damped harmonic oscillators. We then went on to observe different
types of population models, two in particular the Verhulst model (a logistic equation) and
the Lotka-Volterra model. We were able to observe both models graphically using quiver and
streamline plots and altered the initial conditions to observe the affect each one had on the
system.

The Verhulst model’s graph allowed us to better understand how the equation describes pop-
ulation growth and observe the assumptions and short coming of the model, particularly if we
were to keep expanding our time frame with the model it would no longer accurately represent
population, as well as the fact that the model does not account for external factors affecting
population.

The Lotka-Volterra model combats the failure of the Verhulst method to account for exter-
nal factors by primarily focusing on the affect two different species have on the population of
each other. We used the example of foxes and rabbits to show that hunters have an inherent
affect on the population of its pray and vice versa. This model wasn’t perfect as we found that it
would always repeat the pattern determined by the plot over time as the population never truly
remains at zero. This is one of the big limitations of this model. All of this analysis would not
have been possible without the use of quiver and streamline plots to visualise these relationships.

Going one step further with this repeat behaviour concept we explored limit cycles from non-
linear differential equations. This showed us that some differential equations mapped to systems
which either moved towards being in a stable state and entering a close phase diagram loop
or an unstable state where the phase diagram would not be a closed loop. These different
outcomes are controlled by whatever initial conditions are chosen for any particular set of
non-linear differential equations.
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